Hippocampal neurogenesis follows kainic acid-induced apoptosis in neonatal rats.

نویسندگان

  • Hongxin Dong
  • Cynthia A Csernansky
  • Brian Goico
  • John G Csernansky
چکیده

The effects of kainic acid (KA) on neurogenesis in the developing rat hippocampus were investigated. Neonatal [postnatal day (P) 7] rats received a single bilateral intracerebroventricular infusion of KA (50 nmol in 1.0 microl) or vehicle. At P14, P25, P40, and P60, the spatial and temporal relationships between the neurodegeneration and neurogenesis induced by KA were explored using terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (TUNEL) to detect the dying cells and 5-bromodeoxyuridine (BrdU) to label newly generated cells. There was progressive loss of neurons in the cornu ammonis (CA) 1 and CA3 subfields of the hippocampus at all time points in KA-treated rats. TUNEL staining identified dying cells at P14 through P60, mainly in the CA3 subfield. The number of TUNEL-positive cells decreased with age. Neurogenesis also was observed in the KA-treated hippocampus. The number of BrdU-positive cells in the dentate gyrus was significantly decreased at P14, when the number of TUNEL-positive cells is highest. However, at later time points (P40 and P60) the number of BrdU-positive cells in the dentate gyrus was significantly increased. In addition, the number of BrdU-positive cells was increased in the CA3 subfield at P40 and P60 in KA-treated rats. A substantial proportion (40%) of the newly generated cells in CA3 also expressed markers of immature and mature neurons (class III beta-tubulin and neuronal nuclei). Newly generated cells in the CA3 subfield only rarely expressed glial markers (8%). These results suggest that a single exposure to KA at P7 has both immediate (inhibition) and delayed (stimulation) effects on neurogenesis within the dentate gyrus of developing rats. KA administration resulted in both neuronal apoptosis and neurogenesis within the CA3 subfield, suggesting that the purpose of neurogenesis in the CA3 is to replace neurons lost to apoptosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Omega-lycotoxin on the Cognitive Impairment induced by Kainic acid in Rats

Background: Excitotoxicity is a common pathological process in neurodegenerative diseases associated with overactivity of N-methyl-D-aspartate (NMDA) and P/Q type voltage-gated calcium (Cav2.1) channels. Omega-lycotoxin-Gsp2671g is a therapeutic tool to modulate overactive Cav2.1 (P/Q type) channels. Omega-lycotoxin binds to Cav2.1 channels with high affinity and selectivity. This study aimed t...

متن کامل

Neurogenic function in rats with unilateral hippocampal sclerosis that experienced early-life status epilepticus.

Status epilepticus in the adult brain invariably causes an increase in hippocampal neurogenesis and the appearance of ectopic cells and this has been implicated as a causal factor in epileptogenesis. The effect of status epilepticus on neurogenesis in the developing brain is less well characterized and models of early-life seizures typically do not reproduce the hippocampal damage common to hum...

متن کامل

Hippocampal BDNF and TrkB expression in young rats after status epilepticus.

BACKGROUND The immature brain is more susceptible to seizures than mature brains but less vulnerable to seizure-induced neuronal loss. We studied age-related susceptibility and vulnerability to kainic acid-induced status epilepticus (KASE) in rats in terms of hippocampal expression of brain-derived neurotrophic factor (BDNF) and tyrosine kinase B receptor (TrkB). METHODS Immunohistochemical a...

متن کامل

Multi-omics profile of the mouse dentate gyrus after kainic acid-induced status epilepticus

Temporal lobe epilepsy (TLE) can develop from alterations in hippocampal structure and circuit characteristics, and can be modeled in mice by administration of kainic acid (KA). Adult neurogenesis in the dentate gyrus (DG) contributes to hippocampal functions and has been reported to contribute to the development of TLE. Some of the phenotypical changes include neural stem and precursor cells (...

متن کامل

The protective effect of carvacrol on kainic acid-induced model of temporal lobe epilepsy in male rat

Background and Objective: Temporal lobe epilepsy (TLE) is a chronic neurological disorder with spontaneous recurrent seizures and abnormal intracranial waves. Since the role of oxidative stress in the occurrence of epilepsy is inevitable, it seems that the use of antioxidants can prevent some of the complications resulting from this disease. This study was designed to assess the protective effe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 5  شماره 

صفحات  -

تاریخ انتشار 2003